Information Theoretic Measures to Infer Feedback Dynamics in Coupled Logistic Networks
نویسندگان
چکیده
A process network is a collection of interacting time series nodes, in which interactions can range from weak dependencies to complete synchronization. Between these extremes, nodes may respond to each other or external forcing at certain time scales and strengths. Identification of such dependencies from time series can reveal the complex behavior of the system as a whole. Since observed time series datasets are often limited in length, robust measures are needed to quantify strengths and time scales of interactions and their unique contributions to the whole system behavior. We generate coupled chaotic logistic networks with a range of connectivity structures, time scales, noise, and forcing mechanisms, and compute variance and lagged mutual information measures to evaluate how detected time dependencies reveal system behavior. When a target node is detected to receive information from multiple sources, we compute conditional mutual information and total shared information between each source node pair to identify unique or redundant sources. While variance measures capture synchronization trends, combinations of information measures provide further distinctions regarding drivers, redundancies, and time dependencies within the network. We find that imposed network connectivity often leads to induced feedback that is identified as redundant links, and cannot be distinguished from imposed causal linkages. We find that random or external driving nodes are more likely to provide unique information than mutually dependent nodes in a highly connected network. In process networks constructed from observed data, the methods presented can be used to infer connectivity, dominant interactions, and systemic behavioral shift. Entropy 2015, 17 7469
منابع مشابه
Information Decomposition in Bivariate Systems: Theory and Application to Cardiorespiratory Dynamics
In the framework of information dynamics, the temporal evolution of coupled systems can be studied by decomposing the predictive information about an assigned target system into amounts quantifying the information stored inside the system and the information transferred to it. While information storage and transfer are computed through the known self-entropy (SE) and transfer entropy (TE), an a...
متن کاملModeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کاملDynamics of Risk Perception Towards Mutual Fund Investment Decisions
The present paper measures the risk perception of the bank employees in respect of investment in mutual fund and to identify the factors affecting risk perception. The paper also attempts to find out the impact of these factors on overall risk perception. The study is based on primary data collected by using questionnaire from the bank employees in Tripura state of India. For the analysis of da...
متن کاملFeedback arcs and node hierarchy in directed networks
Directed networks such as gene regulation networks and neural networks are connected by arcs (directed links). The nodes in a directed network are often strongly interwound by a huge number of directed cycles, which lead to complex information-processing dynamics in the network and make it highly challenging to infer the intrinsic direction of information flow. In this theoretical paper, based ...
متن کاملBoolean dynamics of biological networks with multiple coupled feedback loops.
Boolean networks have been frequently used to study the dynamics of biological networks. In particular, there have been various studies showing that the network connectivity and the update rule of logical functions affect the dynamics of Boolean networks. There has been, however, relatively little attention paid to the dynamical role of a feedback loop, which is a circular chain of interactions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015